Analytic Theory for the Yarkovsky–o’keefe–radzievski–paddack Effect on Obliquity
نویسندگان
چکیده
The Yarkovsky–O’Keefe–Radzievski–Paddack (YORP) effect is a thermal radiation torque that causes small objects to speed up or slow down their rotation and modify their spin vector orientation. This effect has important implications for spin dynamics of diameter D 50 km asteroids. In our previous work we developed an analytic theory for the component of the YORP torque that affects the spin rate. Here we extend these calculations to determine the effect of the YORP torque on obliquity. Our theory is limited to objects with near-spherical shapes. Two limiting cases are studied: (1) immediate emission of the thermal energy that occurs for surface thermal conductivity K = 0; (2) the effects of K = 0 in the limit of small temporal variations of the surface temperature. We use the linearized heat transport equation to model (2). The results include explicit scaling of the YORP torque on obliquity with physical and dynamical parameters such as the thermal conductivity and spin rate. The dependence of torques on the obliquity is given as series of the Legendre polynomials. Comparisons show excellent agreement of the analytic results with the numerically calculated YORP torques for objects such as asteroids 1998 KY26 and (66391) 1999 KW4. We suggest that an important fraction of main belt asteroids may have specific obliquity values (generalized Slivan states) arising from the roots of the Legendre polynomials.
منابع مشابه
Yarkovsky–O’Keefe–Radzievskii–Paddack effect on tumbling objects
A semi-analytical model of the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect on an asteroid spin in a non-principal axis rotation state is developed. The model describes the spin-state evolution in Deprit–Elipe variables, first-order averaged with respect to rotation and Keplerian orbital motion. Assuming zero conductivity, the YORP torque is represented by spherical harmonic series with ...
متن کاملThe influence of global self-heating on the Yarkovsky and YORP effects
In addition to collisions and gravitational forces, there is a growing amount of evidence that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are primary mechanisms that are fundamental to the physical and dynamical evolution of small asteroids. The Yarkovsky effect causes orbital drift, and the YarkovskyO'Keefe-Radzievskii-Paddack (YORP) effec...
متن کاملTHE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics
The Yarkovsky and YORP (Yarkovsky-O’Keefe-Radzievskii-Paddack) effects are thermal radiation forces and torques that cause small objects to undergo semimajor axis drift and spin vector modifications, respectively, as a function of their spin, orbit, and material properties. These mechanisms help to (a) deliver asteroids (and meteoroids) with diameter D < 40 km from their source locations in the...
متن کاملNon-gravitational perturbations and evolution of the asteroid main belt
Gravity is the most important force to affect the motion of bodies in the Solar system. At small sizes, however, additional forces must be taken into account to explain fine details of their translational and rotational motion, as well as parameters of their populations. This is because the strength of the non-gravitational perturbations typically increases as 1/D toward small sizes D. The prin...
متن کاملDiurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments I. Linear theory
A linear theory for the heat conduction in a spherical, solid and rotating body illuminated by solar radiation is developed in detail. The principal aim is to compute the recoil force, due to thermally reemitted radiation, which is commonly known as the “Yarkovsky force”. We concentrate on the thermal effect which depends on the rotational period of a body rather than on the period of revolutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008